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AUTOMATIC DIFFERENTIATION 
OF NUMERICAL INTEGRATION ALGORITHMS 

PETER EBERHARD AND CHRISTIAN BISCHOF 

ABSTRACT. Automatic differentiation (AD) is a technique for automatically 
augmenting computer programs with statements for the computation of deriva- 
tives. This article discusses the application of automatic differentiation to nu- 
merical integration algorithms for ordinary differential equations (ODEs), in 
particular, the ramifications of the fact that AD is applied not only to the 
solution of such an algorithm, but to the solution procedure itself. This subtle 
issue can lead to surprising results when AD tools are applied to variable- 
stepsize, variable-order ODE integrators. The computation of the final time 
step plays a special role in determining the computed derivatives. We investi- 
gate these issues using various integrators and suggest constructive approaches 
for obtaining the desired derivatives. 

1. INTRODUCTION 

Typically, the description of technical systems or natural phenomena leads to 
complicated mathematical models involving ordinary differential equations, differ- 
ential-algebraic equations, or partial differential equations. For example, many 
problems in mechanical, chemical, and electrical engineering can be formulated as 
an initial value problem using ODEs: 

For given values of system parameters p E IRh, find the trajectories 
x(t,p),x E RT for to < t < tL, where x is the state vector, t the time, 
to the initial time, and tL the final time. The state is determined by the 
solution of the initial value problem 

(1.1) x = f(x, p, t), x(t = to, p) = x, 

where f is the vector of state derivatives and xo is the initial state. 

Problem (1.1) typically is solved by using a numerical integration algorithm, and a 
large body of literature is devoted to this subject (see, e.g., [6, 13, 14, 15, 19, 20, 21]). 
Also, in many engineering applications, one is interested not only in the final state, 
but also in performance criteria 'b computed from the trajectories x. 
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If optimization procedures are applied in order to choose optimal design variables 
with respect to certain performance criteria, or if parameter estimation techniques 
are used to identify model parameters from measurements (see, e.g., [2, 8]), then, 
with the final state 

(1.2) x1 := x(t1, p), 

one typically has to compute 

09xl 
(1.3) apT 

While the sensitivities at the final time step are of interest, their numerical value 
may depend on the whole time history of the system (e.g., when a performance 
criterion is some integral over x from t? to t1). 

During the past decade, so-called automatic differentiation (AD) tools have been 
developed that make it possible to augment general Fortran or C codes with state- 
ments for the computation of derivatives in an automated fashion. AD relies on 
the fact that every computer program employs only simple operations such as ad- 
ditions or multiplications or intrinsics such as sin(), whose derivatives are known, 
and then computes derivatives for the whole program by judicious composition of 
these derivatives using the chain rule of differential calculus. In our experiments, we 
used the ADIFOR1 tool [4]; the ADIFOR reference, as well as [1, 12, 17], provides 
some basics on AD. The impact of the associativity of the chain rule on the cost of 
computing derivatives is discussed in [3, 11], and a collection of currently available 
AD tools can be found on the World-Wide Web.2 

While AD has been used successfully in many large-scale applications and inher- 
ently computes accurate derivatives, the black-box application of AD can lead to 
surprising results, because AD will differentiate not only the solution computed by 
a computer program, but also the algorithm by which the solution is being derived. 
That is, while AD will compute a derivative, the value of this derivative may well 
depend on the algorithm chosen to compute the solution. 

In this article we investigate the automatic differentiation of numerical integra- 
tion algorithms. In the next section, we consider the automatic differentiation of 
a prototypical integration algorithm and illustrate the impact that error-adaptive 
schemes can have on the computed derivatives-that is, different integrators can 
lead to very different values for the computed derivatives. This realization also leads 
us to suggest two approaches to suppress the impact of the solution algorithm on 
derivatives, thus resulting in the computation of derivatives that are defined by the 
nondiscretized solution x(t, p) and, in general, are the desired ones. 

We illustrate these effects and our remediation methodology in Section 3 on a 
relatively simple ODE with known explicit solution, using single-step Runge-Kutta 
integrators with and without adaptive stepsize control, as well as the multistep 
Shampine-Gordon algorithm. The computation of the final time step has a fun- 
damental effect on the overall derivatives, and this issue is also investigated. In 
Section 4, we then apply our approach to a complicated problem from multibody dy- 
namics and verify the results using the adjoint variable approach, an approximation- 
free method to efficiently compute sensitivities for multibody systems. Finally, in 
Section 5, we summarize our results. 

1 See http: //www. mcs . anl. gov/adif or and http: //www. c s. ri ce . edu/ t adif or. 
2See http: //www.mcs. anl. gov/Projects/autodiff/adtools. 
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2. AUTOMATIC DIFFERENTIATION 

OF PROTOTYPICAL NUMERICAL INTEGRATION ALGORITHMS 

The numerical integration of ODEs is one of the basic problems in numerical 
computing, and many research groups are working on the development of reli- 
able and efficient algorithms. These algorithms can be categorized into several 
classes, including single step algorithms, multistep algorithms, and extrapolation 
algorithms. 

Special algorithms also exist, for example, for stiff systems, highly or loosely cou- 
pled systems, and systems composed of several subsystems with different frequency 
ranges or real-time requirements. 

2.1. Derivatives of time. To illustrate the issues relevant to the interplay of AD 
and integration algorithms, we choose some explicit single-step algorithms of Euler 
and Runge-Kutta type with and without stepsize control, as well as a sophisticated 
multistep integration algorithm with adaptive stepsize and interpolation order con- 
trol. The following discussion of integration algorithms is intentionally kept simple 
to emphasize the salient points. Details on numerical integration algorithms and 
their implementation can be found, for example, in the aforementioned references 
and in the many codes available from netlib.3 

With single-step algorithms, the time discretization that typically is applied to 
solve (1.1) leads to a recursive scheme 

(2.1) xi+, = xi + hiXil ti+1 = ti + hi, 

where the subscript i denotes the ith integration step. That is, xi := x(ti), hi is 
the actual stepsize, and xi denotes a slope estimation. The simplest case hi = h 
constant and xi = xi yields the explicit Euler scheme; with xi = i+1, on the other 
hand, we have the implicit Euler scheme. Usually xi is composed from different 
evaluations of the ODE at different times and approximations. The (nonunique) 
weighting coefficients of its different components have to satisfy a Taylor series 
approximation with certain order. 

Most advanced integrators employ adaptive stepsize control that, based on local 
error estimates (e.g., available from a doublestep technique or the simultaneous 
evaluation of different-order schemes), dynamically adapts the stepsize. This step- 
size control is essential for efficiency, enabling one to choose the stepsize as big 
as possible, yet at the same time sufficiently small enough to restrict the integra- 
tion error. Multistep algorithms additionally use information from former steps to 
predict appropriate stepsizes and slopes. Many sophisticated modifications, such 
as the use of variable extrapolation order or projections, may further improve the 
efficiency. As a result, all variables in (2.1) may depend on the system parameters 
p, that is, 

(2.2) xi+?1 (p) = xi (p) + hi (p)xi (p) 

The procedure defined by (2.2) is the blueprint of a numerical algorithm, which 
starts from the initial values x0 = xo and the system parameters p and computes 
some final values x1 (p) via an often extremely large number of intermediate steps. 

3See http: //netlib. att . com/netlib/master/readme . html. 
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Differentiating (2.2) with respect to p, with 

(2.3) Vx dpT 

we obtain 

(2.4) Vxi+1 = Vxi + hiV xi'+ Vhixi- 

Note that, depending on how hi is computed, we may obtain very different values 
for the total derivative Vx1. If the initial values xo are independent of p, then 
Vxo = 0; otherwise, Vxo has nonzero components. 

2.2. Computation of the desired derivatives for the state variables. To 
obtain the desired derivatives, we can consider two choices, which are illustrated in 
Figure 1. 

mathemaical f(, P, t)manual 
mathlem atiand 

= ,t transformation [Vx] = [Vx] (Vx, x, P, t) 
problem and x(t = to) ? Vx(t = to) Vx0 

I_3 X(tl Ilvx(t)l 

automatic 
. transformation 

numerical xi+= xi + hi xi with AD-tools VXi+1 = ? 
problem and xO = xo Vxo = Vx? 
solution 

xj, t = t- Vxj, t =t 

FIGURE 1. Manual transformation versus automatic transforma- 
tion with AD tools 

1. Differentiate the ODE and integrate: 
Differentiating (1.1) with respect to p, we obtain with dt/dpT = 0 

d d (dxN &f dx &9f 

(2.5) dpT(x) = dpT (dt ) XTdpT +O pT 

Exchanging the order of differentiation, we thus obtain a new ODE for Vx: 

d _xNd Of Of 
(2.6) d(dx - (Vx) = [Vx] = Vx + , Vx(t = to) = Vx? dt \~dpT ,I dt &9xT 9p T 

which we can integrate alongside our original solution. AD techniques could, 
for example, be employed to compute &f/&xT and &f/&p T, but we would not 
differentiate through the integration algorithm for x. 

Given a suitable integrator, this approach will deliver the desired sensitivi- 
ties Vx1 with suitable accuracy, since its behavior is governed jointly by (1.1) 
and (2.6). Up to the chosen tolerance, the actual time discretization will not 
impact either x1 or Vx1. 

2. Differentiate the integrator for the ODE: 
Viewing the integration procedure for solving (1.1) as a black box that, 
given values for p, produces values for x1, we can employ an AD tool to 
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augment both the problem-independent code for the numerical time integra- 
tion algorithm and the problem-specific code for the evaluation of the ODE 
x = f(x, p, t) with statements for the computation of derivatives. 

We observe two facts: 
(a) Since AD tools do not alter the control flow of the original program, the 

time discretization chosen is determined solely by the integration of (1.1). 
(b) As observed in (2.2), the stepsize hi is likely to depend on the parame- 

ters p, and an AD tool will associate a gradient Vhi with hi. Thus, the 
update (2.4), which will be computed by an AD tool, leads to an incon- 
sistent integrator for Vx, as the final result depends on the discretization 
strategy chosen. Hence, it is also unlikely that Vx1 = Vx ti=1 equals 
the desired &x1 /&pT. 

The automatically differentiated integration algorithm computes x1 (t1 (p), p), 
where the physically implausible dependence of t1 on p results only from the adap- 
tive time discretization. Differentiating with respect to p, we obtain 

(2.7) Vx I 1 Vt + T 

The total derivatives Vx1 = dxl/dpT and Vt1 = dtI/dpT depend on the time 
discretization and are computed by the AD-generated code. Thus, to arrive at the 
desired solution &x1 /&pT, we can pursue one of the following strategies: 

* Perform an a posteriori error correction: From (2.7), taking (1.1) into account, 
we realize that the desired derivatives 9xl/&pT, which do not depend on the 
time discretization chosen, can be computed as 

(2.8) 1VX1 _ f(x1p,t1)Vt1. 
&9pT 

* Use an integrator with fixed stepsize: In this case, we have Vhi =0, Vi. Thus 
Vt _ O0 and hence Vx1 I=xl/&pT in (2.7). The AD-computed derivative 
trajectories are the desired ones, and thus, no modification is required for 
fixed-stepsize integration algorithms (see also [18], which explores this issue 
in more detail in the context of a so-called quasi-steady-state integrator). 

* Modify the AD-generated code to enforce Vhi = 0, Vi: For the first step, the 
user must guess an initial stepsize ho. Because ho is independent of p, we 
have Vho = 0. Assume that the correct stepsize is known in advance for each 
step. Then Vhi = 0, Vi (which implies Vt 0, Vi), and one gets the same 
correct results as for the fixed stepsize algorithms. Thus, by modifying the 
AD-generated code manually to ensure 

(2.9) Vhi = 0 

we can ensure consistency. While this procedure could be done easily when 
the code is developed, and may in fact be desirable because of the potentially 
unpredictable nature of Vx and Vt even when 9x/9pT is well behaved, it is 
likely to be a nontrivial task after the fact, since in-depth knowledge of the 
differentiated code may be required in order not to miss subtle dependencies. 

Perhaps surprising, a commonly used strategy for determining x1 for a predeter- 
mined tL results in Vt1 = 0 and hence &x1/&pT = Vx1. If, for a suggested stepsize 
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hi, we have in the last step ti + hi > tL, we are likely to set 

(2.10) hi+L = tL _ ti (implying Vhi+l =-Vti), 

since tL is a user-selected constant. Thus, the computation 

(2.11) ti+I = ti + hi+1 implies Vt1 = Vti+1 = Vti + Vhi+1 = 0. 

Hence, for the last step (and most likely only for the last step), we have Vti = 0, 
and therefore the a posteriori correction is not required for Vx1, although it is most 
likely required for any other point on the derivative trajectory. 

However, there is no guarantee that Vt1 = 0 if tl has been preselected. Another 
frequently chosen approach to compute x1 is to terminate the integration at the 
first time point beyond tl and then interpolate the value of x for tL. In this case, 
Vtl1 is unlikely to be zero, and the error correction is required. Thus, for the general 
user, who most likely is not familiar with the internals of the algorithm, we suggest 
checking whether Vtlt=tL is zero. If it is not, the a posteriori correction (2.8) should 
be applied. 

3. EXPERIMENTAL RESULTS WITH A ONE-MASS OSCILLATOR 

The simplest multibody system is a horizontal one-mass oscillator shown in Fig- 
ure 2. As shown, for example, in [2], one can derive closed-form solutions for both 
the state and its gradients, and thus the system is well suited as an example to 
illustrate the issues outlined in the preceding section. 

FIGURE 2. One-mass oscillator 

3.1I. Mechanical model. A body with mass m can slide on the horizontal ground. 
It is coupled to the wall with a linear spring with spring stiffness c. The p6osition is 
described by y(L). From Newton's equation one can derive the equation of motion 

(3.1) m + Cy =0 

or, with x =[y, ~] T, the corresponding set of first-order ODEs 

12 Y X 

With the initial condition x(t to) = o [0, VO]T, the solution of the ODE is 

(3.3) y(L) = o sin I t. 
c m 

For m 1 and the system parameters p [ vO]T, we find 

(3.4) y(L) =v0 1 siny'-t, ~(t) =v0 Cosy'C-L, j(L) -v 'X./'sin V"&. 

SX.&9.93$g.S,.,,?siSs 
........,.S 
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Two criteria are now defined: The criterion /1 contains the position of the body 
at time tl = 7r/2, and for p = [1, 0.5]T we have 

d__ d cb/i_ v0 (7r / T 1 tiV dfl = df = U ( 2cos (X/E2)- sin ('42) =-0.25, 
dpi dc 2cK2 co2y~ v- 2_sn-.5 

(3.5) d - dv - sin (v/ - 1.0. 

The criterion 'b2 integrates the position over the whole interesting simulation time 
interval [to,ti]: 

t ~~t'7r/2 ~0 0 

(3.6) V$'2 I y(t) dt = |sin (Vt) dt = 1 -cos V ) . 

Here, the integral type criterion can still be computed analytically, but for more 
complicated systems it has to be evaluated numerically together with the ODE of 
the mechanical system, yielding an extended state 

(3.7) cX 

L X3 ] L '2 | L Xl i 

Again we find explicit solutions for the gradients 

(3.8) d,02 - d2 _ 2b'2 2 2sin(V2) v? cos 2) V0 
(3.8) ~dpi dce2C 

d,/2 d,02 1 1 
(39) d - dv0 ---Cos V )' 

and, for the given numerical values, the results 

(3.10) d./'2 = 80. 
dpi 8 2' dP2 

3.2. Single-step integration algorithms without stepsize control. We in- 
vestigate three similar integration schemes: the explicit Euler scheme, the Heun 
algorithm, and the fourth-order Runge-Kutta algorithm; see [16]. Because the 
stepsize h does not change during the integration, ADIFOR does not generate a 
gradient Vh. 

Table 1 shows the relative errors for the criteria and the gradients for different 
stepsizes and integration algorithms. Only minor differences between the reference 
gradient and the AD gradients exist. The relative error in the criteria is about 
the size of the error in the gradients. As expected, automatic differentiation of 
single-step integration algorithms without stepsize control leads to the desired result 
without any need for user modifications. 

The differences can be explained by the choice of the stepsize and the algorithm; 
no additional errors are introduced by the automatic differentiation procedure. 
The higher-order algorithms yield higher accuracies, and the errors are at least 
of order 0(h) for the Euler integrator, 0(h2) for the Heun integrator and 0(h4) 
for the Runge-Kutta integrator. Some components yield even higher error order; 
for example, for the Runge-Kutta integrator ,1 and d,'l /dp2 seems to be of order 
0(h5). 
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TABLE 1. Relative errors for different stepsizes 

Step h Method 'I 2 d) 01 dV) 1 dV)2 dV)2 
________ _________ ________ ~dpl dP2 dp l dP2 

0.25 Euler .20e-0 .36e- 1 .28e-0 .20e-0 .63e-0 .36e- 1 
Heun .28e-2 .15e-1 .16A-1 .28e-2 .45e-1 .15e-1 
Ru-Ku . .10e-4 .48e-4 .25e-4 .10e-4 .37e-3 .48e-4 

0.025 Euler .20e-1 .33e-3 .21e-1 .20e-1 .72e-1 .33e-3 
Heun .30e-5 .16e-3 .25e-3 .30e-5 .40e-3 .16e-3 
Ru-Ku .1 le-9 .51e-8 .74e-8 .1 le-9 .36e-7 .51e-8 

0.0025 Euler .20e-2 .33e-5 .20e-2 .20e-2 .72e-2 .33e-5 
Heun .31e-8 .16e-5 .26e-5 .31e-8 .38e-5 .16e-5 
Ru-Ku .14e-14 .49e-12 .76e-12 .14e-14 .36e-11 .49e-12 

3.3. Single-step integration algorithms with adaptive stepsize control. 
The next algorithm we investigate is a mixed fourth- and fifth-order Runge-Kutta 
algorithm with stepsize control; see [7]. To get an estimate for the absolute local 
error, a fifth-order Runge-Kutta method 

(3.11) xi+, = xi + h(... ) + 0(h6) 

and an embedded fourth-order Runge-Kutta method 

(3.12) xi+,= xi + h(... ) + 0(h5) 

are evaluated. The error is of magnitude 0(h5) and follows from the difference 

(3.13) A = I Ixi+I - x* l loo. 

Because the error A is of magnitude h5, we can estimate the required stepsize h 
from the desired error bound A, the actual stepsize h, and the actual error A: 

(3.14) h5 h5 hh A 

If h > h, the actual stepsize was too big, and the step has to be repeated with 
decreased stepsize h until the error estimate is acceptable. Otherwise, the next 
(increased) stepsize is computed, and the integration proceeds. Because the ac- 
tual stepsize hi and the actual time ti depend on the state xi and therefore on 
the system parameters p, an automatic differentiation tool will compute gradients 
Vhi = dhi/dpT and Vti = dti/dpT, respectively, as suggested in (2.4). 

We then employ relation (2.8) to compute, at every time step, the desired 
ax/OpT from Vx and Vt. Figure 3 shows some of the trajectories from aX/OpT, 
Vx, and Vt, where the error tolerance was chosen to be 10-8. Note that the trajec- 
tories for ax/lpT and the AD-computed Vx are very different, but the gradients 
computed with the correction (2.8) lead to the correct results. (The derivatives 
with respect to P2 and the derivatives related to x2 and X3 show the same behavior 
but, for clarity of presentation, are not drawn here.) 

The error can be controlled by the user-defined error bound; see Table 2, where 
the final time is set equal to t1 = 10. It can be seen that the relative errors in 
)1 = xI, 2 = X3 and their derivatives are both within the prescribed error bound. 

Of course, the stricter the prescribed error bounds, the higher the number of steps 
required. In Figure 4 the trajectories are shown for two different prescribed errors 
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TABLE 2. Relative errors in the states for different prescribed error bounds 

L | # Steps 2 | 91 | f : d'db1 d'4b1 d'4b2 d4b2 4 4 ~~~~dpl dp2 dpl dp2 

10-5 21 .lle-4 .36e-4 .82e-4 .32e-4 .73e-4 .lle-4 

10-8 72 .89e-7 .36e-7 .1 1e-6 .54e-7 .35e-7 .22e-7 

10-11 281 .83e-10 .37e-10 .88e-10 .51e-10 .54e-10 .19e-11 

-2 

-3 dxl/dpl 

-4 axi/apl (computed) 

-5 X e - axllapl (analytical)-_- -5 M3_ EDdtldpl 

0 1 2 3 4 5 6 7 8 9 10 

FIGURE 3. Trajectories aoi/lPi = axl/lpi, Vo1 = Vx1, Vti 
and b1 = xi~1 

bounds (i0-5 and 10-8). The trajectories for x and ax/lpT nearly coincide for dif- 
ferent error bounds, but because the time discretization depends on the prescribed 
error bound, we get significantly different trajectories for Vx and Vt. 

Note that in the unmodified AD-created code the stepsize is controlled only by 
the integration of the n ODEs for xi and is not affected by the nh ODEs for Vxi. 
Therefore, the prescribed error bound A is valid only for x. 

By a manual modification of the generated code, we can also include the extended 
state Vxi in the error estimation. This allows us to guarantee correct results within 
the error bounds also for the sensitivities, but of course the integration may require 
more time steps because of the larger dimension n + nh of the extended ODE. 

Different methods to compute the criteria and their derivatives at the final 
timestep have been investigated. The simplest approach is to restrict the size 
of the final timestep. This can easily be done by checking the new proposed time 
ti+l= ti + h.i+ after every step. If t.i+ > t1, we restrict hi+, to be tl - ti. As 
described in (2.11), Vt1 will be zero and no correction (2.8) is required to obtain 
the correct results. 

As an alternative, we used interpolation. Here the integration is stopped as 
soon as ti > t1, and the criteria and derivatives at the final time t1 are computed 
by an interpolation between the last two intgration steps, for example, the linear 
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1 [ d1x,/8pl(computed) > 
1 ~~~~~~(analytical) -4 

0 

time~~i 

-1~~~~~~~~~~~~~~5 

-2 

-3 

(3 lo-)x i-l+(ix- 

-4 ~~~~~~~dt/dp1 08 

-5 

0 1 2 3 4 5 6 7 8 9 10 

time 

FIGURE 4. Trajectories for different time discretizations 

interpolation 

1 ~ ~~~~~l- ti-i 
(3.15) x =i I% ? (Xi - x~i) , 

As expected, the results for the criteria are correct, but the results for their gradients 
are wrong if the correction (2.8) is not applied. The use of higher-order interpolation 
schemes leads to different values for Vxl and Vtl, but the value for x1 l/0pT 
computed from (2.8) does not change appreciably. 

If the final time is not known explicitly, but is determined implicitly by a final 
condition H1 (tl, xl, p) = 0, a root search has to be performed as described in [20]. 
The final timestep is not actually performed until the root search determined the 
final time with sufficient accuracy. Therefore, not the root search algorithm itself 
but only its result influences the final state. Because the final timestep will be 
chosen to reach t1, the results for both the criteria and their gradients need no 
correction (2.8). This issue is described in detail in [9]. 

3.4. Multistep integration algorithm. The four algorithms described so far are 
robust, but for production codes, more sophisticated algorithms typically are used. 
In multibody dynamics the Shampine-Gordon algorithm [20] serves as standard 
solver and has proved its reliability and efficiency in many applications. It is a 
multistep algorithm, in which the information already available from previous steps 
is used to predict further steps. Not only is the stepsize adjusted adaptively, but 
also the order of extrapolation polynomials is controlled by local error estimates. 
For trajectories that are not too rough (i.e., nonstiff systems), high polynomial 
orders and large stepsizes are obtained. 
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TABLE 3. Relative errors in the states for different prescribed error bounds 

Error Bound _i 02 . ki ;)pi &ik2 &k2 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ P 1 &P 2 a P 1 &P 2 

.le-2 .lle-2 .66e-2 .12e-1 .11 .le-1 .18e-1 

.le-5 .17e-4 .66e-5 .16e-5 .82e-4 .22e-4 .23e-4 

. le .15e-7 .15e-8 .59e-8 .79e-7 .14e-7 .60e-8 

The integration algorithm consists of about 900 lines of rather complicated For- 
tran code. Therefore, a manual modification of the code to ensure Vhi = 0 is not 
deemed to be a reliable approach, and the a posteriori error correction (2.8) is ap- 
plied to the ADIFOR-generated derivative code. This leads to the correct results; 
see Table 3. 

The correct final time in the investigated version of the Shampine-Gordon algo- 
rithm is computed by using a clever interval bisection routine as described in [20]. 
This guarantees that the evaluation of the last accepted step is at the final time 
and Vt1 = 0. 

4. APPLICATION TO A TECHNICAL SYSTEM 

To allow comparisons with analytical results, we kept the example simple, but it 
was already possible to show the properties of the differentiated integration algo- 
rithms and various pitfalls that have to be considered. A more complicated example 
from robotics will be presented in this section to show that the presented effects 
also allow a correct handling of interesting real-world problems. 

The robot in Figure 5 consists of seven bodies, has five degrees of freedom 
(i.e., it allows five independent motions), and is described by ten ODEs. It is 
described in detail in [2], where the sensitivity of the position of the end effec- 
tor at the final time with respect to disturbances in several system parameters 
p = [FiZ, L, tend,m2, I3zz]T is investigated. Flz is a driving force, L a geometrical 
length, tend the final time, m2 a mass, and I3zz a component of the inertia tensor. 
For optimization purposes, additional criteria such as minimal energy consumption 
or minimal process time are interesting, but for clarity here we restrict ourselves 
to only one criterion. The results are verified by using the adjoint variable method 
(AVM) and very costly finite-difference approximations with adaptive order control 
[2]. 

The reference criterion and reference gradient obtained by using the adjoint 
variable method with integration error tolerances near machine accuracy is for the 
component 0&//&pj as follows: 

(4.1) f = -4.136636, = 0.0186126. 

Usually it is not required to compute the gradients to such high accuracy. If the 
relative and absolute error bounds for the Shampine-Gordon integration algorithm 
are chosen as relerr=abserr=10-8, we get the following errors in the component 

AVM: relerr = 8.06 10-7, abserr = 1.50 10-8, 

AD+correction: relerr = 2.31 .10-7, abserr = 4.30 10-8. 
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The errors in the other components are similar, and are omitted here. Both 
gradients are sufficiently accurate, and both methods can be used, for example, 
for the sensitivity analysis of multibody systems. Also, for all other components, 
correct results are computed with both methods. 

In general, the computation of the adjoint variable gradients is more efficient, but 
they are based on a hand-coded, highly optimized algorithm whose implementation 
took man-years, while the AD-generated code is fairly simple to create and requires 
(including the result verification) much less time, at the expense of a less efficient 
execution. 

We note, however, that, while usually even big codes can be run through ADI- 
FOR within a few days, the time for the verification of the gradients can be much 
higher. Unless both the algorithm and its implementation are well understood, one 
should check the results carefully. This need for verification is not due to potential 
weaknesses of AD tools, but due to the fact that AD differentiates an algorithm 
without any knowledge of the mathematics that underlie the algorithm. This is both 
a strength, as programs of arbitrary size can be handled (ADIFOR has successfully 
differentiated codes of 120,000 lines in length, and produced the desired results), 
but also a potential weakness, as the discussions so far have shown. Thus, AD is no 
"silver bullet," but we believe that, at least from our experience in multibody op- 
timization, it does substantially ease the effort required for derivative computation 
while delivering acceptable performance. Finite difference approximations are in 
our experience inacceptable due to their lack of efficiency and reliability. The other 
alternative, the development of specialized code for the gradient computation, is 
costly in terms of human effort, but can be justified when maximal efficiency is a 
major design goal, for example, in the development of the adjoint variable method. 
It is worth emphasizing though, that the implementation of the adjoint variable 
method is closely tied to a particular integration scheme. It is cumbersome to ex- 
change the integration algorithm, whereas AD techniques allow integration schemes 
to be substituted quite easily. 
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5. CONCLUSIONS 

From the investigations described above, we can summarize our conclusions in 
three groups: 

* The numerical behavior of the criteria and the gradient computation must be 
studied carefully. It is not obvious, for example, that the stepsize control is 
determined only by the state variables required for the criteria computation; 
and, therefore, the errors introduced in the state variables for the gradients 
may be bigger than the prescribed error bounds for the state variables for 
the criteria. Similar issues arise in the context of applying AD to iterative 
solvers [10]. In our experience, this behavior is acceptable in many practi- 
cal applications because for optimization purposes, for example, it is often 
sufficient to compute the gradients with lesser accuracy than the criteria. 

* The formulation of the gradient equations for the actual computation per- 
formed (versus their counterpart in the world of continuous mathematics), 
such as (2.4), may be subtle. For example, the formulation of implicit, para- 
meter-dependent final conditions instead of a fixed final time would introduce 
new dependencies of the criteria from the intermediate time steps. Also, time 
discretization and stepsize control are likely not the only influencing factors 
from numerics. Features such as variable-order polynomial interpolations and 
projections depend also on the input quantities, are assigned gradients by the 
AD tools, and therefore influence the finally computed gradients. Correc- 
tions of AD-computed gradients are required to arrive at the mathematically 
desired results, and the remarks given here for the adaptive time discretiza- 
tion thus may need to be extended to handle other auxiliary variables in an 
algorithm. 

* Despite the fact that the application of plain AD often yields the right re- 
sults, the inclusion of expert knowledge can highly improve the performance 
and numerical behavior. If, in our example, the differentiation of the step- 
size control in the AD-generated code is switched off, we can compute correct 
gradients more efficiently. However, these modifications require a lot of knowl- 
edge about the problem and the gradient computation. Thus, even if AD tools 
provide annotation capabilities that allow a user to treat certain variables as 
constant with respect to differentiation, one still needs to be careful not to 
miss any dependencies. 

Thus, while the work presented here allowed us to obtain the desired derivatives 
from an algorithm relevant for practical problems such as the Shampine-Gordon 
algorithm, we may definitely not conclude that the a posteriori correction of (2.8) 
is sufficient for all other integration algorithms as well. AD tools such as ADIFOR 
or ADIC [5] allow the differentiation of arbitrary complex codes, but for each of 
them, one must decide whether and which modifications or a posteriori corrections 
are required to obtain correct results. General rules are hardly possible, but we 
expect that the work presented here will cover a fair number of cases. Moreover, 
the work helps to sharpen the user's eyes for other possible sources of "errors" 
arising from the discrepancy between the derivatives of the integration algorithm 
and the derivatives of the solution that is being approximated by this algorithm. 
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